Transcriptomic Analysis of Long Non-Coding RNAs and Coding Genes Uncovers a Complex Regulatory Network That Is Involved in Maize Seed Development
نویسندگان
چکیده
Long non-coding RNAs (lncRNAs) have been reported to be involved in the development of maize plant. However, few focused on seed development of maize. Here, we identified 753 lncRNA candidates in maize genome from six seed samples. Similar to the mRNAs, lncRNAs showed tissue developmental stage specific and differential expression, indicating their putative role in seed development. Increasing evidence shows that crosstalk among RNAs mediated by shared microRNAs (miRNAs) represents a novel layer of gene regulation, which plays important roles in plant development. Functional roles and regulatory mechanisms of lncRNAs as competing endogenous RNAs (ceRNA) in plants, particularly in maize seed development, are unclear. We combined analyses of consistently altered 17 lncRNAs, 840 mRNAs and known miRNA to genome-wide investigate potential lncRNA-mediated ceRNA based on "ceRNA hypothesis". The results uncovered seven novel lncRNAs as potential functional ceRNAs. Functional analyses based on their competitive coding-gene partners by Gene Ontology (GO) and KEGG biological pathway demonstrated that combined effects of multiple ceRNAs can have major impacts on general developmental and metabolic processes in maize seed. These findings provided a useful platform for uncovering novel mechanisms of maize seed development and may provide opportunities for the functional characterization of individual lncRNA in future studies.
منابع مشابه
Phylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملAugmented expression levels of lncRNAs ecCEBPA and UCA1 in gastric cancer tissues and their clinical significance
Objective(s): As the second cause of cancer death, gastric cancer (GC) is one of the eminent dilemmas all over the world, therefore investigating the molecular mechanisms involved in this cancer is pivotal. Unrestricted proliferation is one of the characteristics of cancerous cells, which is due to deficiency in cell regulatory systems. Long non-coding RNAs (lncRNAs) have emerged as critical re...
متن کاملIdentification and Functional Prediction of Long Non-Coding RNAs Responsive to Drought stress in Lens culinaris L.
Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. In the course of evolution evolution, crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged in plant in response to drought and other abiotic stresses. In the present study, after identifying lncRNAs within the expression profile of lentil, RNA-s...
متن کاملLong non-coding RNAs and their significance in human diseases
Protein-coding genes account for only a small fraction of the human genome and most of the genomic sequences are transcriptionally silent, but recent observations indicate significant functional elements, including non-coding protein transcripts in the human genome. Long non-coding RNAs (lncRNAs) have been defined as transcripts of >200 nucleotides without protein-coding capacity that perform t...
متن کاملبیان ژن MALAT1 بعنوان یک نشانگر زیستی جدید در بیولوژی سرطان
Background & Aim: Long non-coding RNAs are regulatory molecules that adjust many vital intracellular processes. MALAT1 is a long non-coding RNA playing a key role in the regulation of intracellular important processes and also involved in biology of various cancers. The purpose of this study was to investigate the functions of MALAT1 and overview of its role in cancer biology. Methods: in this...
متن کامل